
Learning Goals: Absolute Convergence, Ratio and Root test.

• Definition of Absolute Convergence and Conditional convergence, be able to distinguish between
the two types of convergence.

• Become familiar with the Alternating Harmonic Series and know that it converges (conditionally).

• Be able to use the theorem that says an absolutely convergent series is convergent.

• Master the Ratio Test.

• Master the Root Test.
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Absolute Convergence, Ratio and Root test. (Section 11.6 in Stewart)

In this lecture we will develop the tools necessary to tackle the problem of finding the radius of con-
vergence of a power series. In particular, we will develop two further tests for convergence, namely the
Ratio Test and the Root Test. Before we discuss these tests for convergence, we first distinguish between

two types of convergence for a series. For a power series
∞∑

n=0

cn(x − a)n with radius of convergence R,

the series diverges when |x − a| > R, it is absolutely convergent for values of x where |x − a| < R
and we may have absolute or conditional convergence or divergence at a given endpoint of the interval
(a−R, a+R).

Absolute and Conditional Convergence

Definition A series
∑
an is called absolutely convergent if the series of absolute values

∑
|an|

is convergent.

If the terms of the series an are positive, absolute convergence is the same as convergence.

Example Are the following series absolutely convergent?

A.
∞∑

n=1

(−1)n

2n
, B.

∞∑
n=1

(−1)n+1

n
.

Solution
∞∑

n=1

(−1)n

2n
is absolutely convergent since the sum of the absolute values

∞∑
n=1

1

2n
converges

because it is a geometric series
∞∑

n=0

rn with |r| < 1.

On the other hand
∞∑

n=1

(−1)n+1

n
is not absolutely convergent since the sum of the absolute values

∞∑
n=1

1

n

is divergent (this is the harmonic series discussed in a previous section).

Definition A series
∑
an is called conditionally convergent if the series is convergent but not

absolutely convergent.

Alternating Harmonic Series: The series
∞∑

n=1

(−1)n+1

n
( known as the alternating harmonic

series) is convergent, despite the fact that the sum of its absolute values is divergent. Therefore
this series is conditionally convergent.

Click on the blue link for a full Proof that the Alternating Harmonic Series Converges. You
can get the gist of the proof with a little experimentation. Fill in the blank spaces in the following table

of partial sums for the series
∞∑

n=1

(−1)n+1

n
:

S2n Even S2n+1 Odd
S2 1/2 S1 1
S4 S3

S6 S5

S8 S7

S10 S9
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We see that the even sums are increasing and bounded above by 1 and below by 1/2 and therefore
converge (as a sequence) to some number L ( by the results on the convergence of sequences which
are monotonic and bounded (on page 7 of Lecture A)). On the other hand, the odd partial sums are
decreasing and bounded and hence converge (as a sequence) to some number L1. Since S2n+1 − S2n =
(−1)2n+2

2n+ 1
=

1

2n+ 1
, we have that lim

n→∞
S2n+1−S2n = lim

n→∞

(−1)

2n+ 1
. On the left, we get L−L1 and on the

right we get 0, therefore L = L1 and the series converges to this number. In fact we can use continuity
of power series to determine the value of L. The following theorem relies of some theorems and concepts
(the Weierstrass M-test and uniform convergence) from real analysis for its proof:

Theorem A power series
∞∑

n=0

cn(x− a)n is continuous on its interval of convergence

Recall that the power series expression for ln(1 + x) is
∞∑

n=0

(−1)n x
n+1

n+ 1
, −1 < x ≤ 1 and we have

shown above that this power series has interval of convergence (−1, 1]. Thus since the power series is
continuous on the interval (−1, 1] by applying the theorem above, we must have that

lim
x→1−

ln(1 + x) = lim
x→1−

∞∑
n=0

(−1)n x
n+1

n+ 1
=
∞∑

n=0

(−1)n 1n+1

n+ 1
=
∞∑

n=1

(−1)n+1

n
.

Thus we must have

ln(2) =
∞∑

n=1

(−1)n+1

n
.

Theorem: If a series is absolutely convergent, then it is convergent, that is if
∑
|an| is

convergent, then
∑
an is convergent.

Click on the blue link to see the proof.

Example Are the following series convergent (test for absolute convergence)

∞∑
n=1

(−1)n+1

3n
,

∞∑
n=1

sin(n)

4n
.
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The Ratio Test

This test is useful for determining absolute convergence.

Let
∑∞

n=1 an be a series (the terms may be positive or negative).

Let L = limn→∞

∣∣∣an+1

an

∣∣∣.
• If L < 1, then the series

∑∞
n=1 an converges absolutely (and hence is convergent).

• If L > 1 or ∞, then the series
∑∞

n=1 an is divergent.

• If L = 1, then the Ratio test is inconclusive and we cannot determine if the series converges or
diverges using this test.

This test is especially useful where factorials and powers of a constant appear in terms of a series.

Example Test the following series for convergence using the ratio test

∞∑
n=1

(−1)n−1 2n

n!
,

∞∑
n=1

nn

n!
,

∞∑
n=1

(−1)n
( n

5n

) ∞∑
n=1

(−1)n

n2
.

If the root test is inconclusive, say so.
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The Root Test

Let
∑∞

n=1 an be a series (the terms may be positive or negative).

• If limn→∞
n
√
|an| = L < 1, then the series

∑∞
n=1 an converges absolutely (and hence is convergent).

• If limn→∞
n
√
|an| = L > 1 or limn→∞

n
√
|an| =∞, then the series

∑∞
n=1 an is divergent.

• If limn→∞
n
√
|an| = 1, then the Root test is inconclusive and we cannot determine if the series

converges or diverges using this test.

Example Test the following series for convergence using the root test:

∞∑
n=1

(−1)n−1
( 2n

n+ 1

)n

,
∞∑

n=1

( n

2n+ 1

)n

,
∞∑

n=1

( lnn

n

)n

.

If the root test is inconclusive, say so.
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The Table
We will update our table of power series to reflect our new information from page 3 of this lecture,
namely that

ln(2) = ln(1 + 1) =
∞∑

n=0

(−1)n

n+ 1
.

You might find it interesting to note that by choosing x = −1/2 in the power series expression for
ln(1 + x) we get

− ln(2) = ln(1/2) = ln(1− 1

2
) =

∞∑
n=0

(−1)n(−1)n+1

2n+1(n+ 1)
= −

∞∑
n=0

1

2n+1(n+ 1)
.

That is

ln(2) =
∞∑

n=0

1

2n+1(n+ 1)
.

You can of course derive many more such interesting formulas from the table below.

function Power series Repesentation Interval

1

1− x

∞∑
n=0

xn −1 < x < 1

1

1 + xk

∞∑
n=0

(−1)nxkn −1 < x < 1

ln(1 + x)
∞∑

n=0

(−1)n x
n+1

n+ 1
−1 < x ≤ 1

arctan(x)
∞∑

n=0

(−1)n x
2n+1

2n+ 1
−1

?
< x

?
< 1
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Extras
Proof that the Alternating Harmonic Series Converges

Consider the partial sums of the series
∞∑

n=1

(−1)n+1

n
:

S1 = 1

S2 = 1− 1

2
= 1/2

For n > 1, the odd partial sums S2n+1 are bounded above by 1 and below by 1
2

since

S2n+1 = 1−
(

1

2
− 1

3

)
−· · ·−

(
1

2n
− 1

2n+ 1

)
< 1

[
because

(
1
2
− 1

3

)
,

(
1
4
− 1

5

)
, . . . ,

(
1
2n
− 1

2n + 1

)
< 0
]

and similarly

S2n+1 = 1− 1

2
+

(
1

3
− 1

4

)
+ · · ·+

(
1

2n− 1
− 1

2n

)
+

1

2n+ 1
>

1

2
.

Likewise for n > 1, the even partial sums S2n are bounded above by 1 and below by 1
2

since

S2n = 1−
(

1

2
− 1

3

)
− · · · −

(
1

2n− 2
− 1

2n− 1

)
− 1

2n
< 1

and

S2n = 1− 1

2
+

(
1

3
− 1

4

)
+ · · ·+

(
1

2n− 1
− 1

2n

)
>

1

2
.

Now it is easy to show that the sequence of even partial sums converges since the sequence is increas-

ing (S2(n+1) = S2n +

(
1

2n+ 1
− 1

2n+ 2

)
> S2n ) and bounded

1

2
≤ S2n ≤ 1 (using our result on

the convergence of sequences which are monotonic and bounded (on page 7 of Lecture A). Therefore

lim
n→∞

S2n = γ for some finite number γ between
1

2
and 1. Now the odd partial sums have the same limit

since S2n+1 = S2n +
1

2n+ 1
, therefore lim

n→∞
S2n+1 = lim

n→∞
S2n = γ. Thus all partial sums converge to the

same limit and the series converges.

Back to Lecture
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Theorem: If a series is absolutely convergent, then it is convergent, that is if
∑
|an| is

convergent, then
∑
an is convergent.

Proof: We have that
∑
|an| is convergent and we let

∑
|an| = γ for some finite number γ. Let

SN = |a1|+ |a2|+ · · ·+ |aN | be the Nth partial sum of the series
∑
|an|. Since

0 ≤ an + |an| ≤ 2|an|,

taking nth partial sums we have we have that

0 ≤
N∑
1

(an + |an|) ≤ 2SN .

Now since
∑
|an| = γ and its partial sums are increasing(because the terms are positive) we must

have 2SN ≤ 2γ. The series
∑

(an + |an|) also has non-negative terms and thus its partial sums are
increasing. They are bounded above by 2γ so therefore by the results on the convergence of sequences
which are monotonic and bounded (on page 7 of Lecture A),

∑
(an + |an|) converges to some finite

number δ. Now ∑
an =

∑
(an + |an|)−

∑
|an|,

and since it is the difference of two convergent series it is convergent and sums to δ − γ.

Back to Lecture
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Extras: Rearranging sums

If we rearrange the terms in a finite sum, the sum remains the same. This is not always the case for
infinite sums (infinite series). It can be shown that:

• If a series
∑
an is an absolutely convergent series with

∑
an = s, then any rearrangement of

∑
an

is convergent with sum s.

• It a series
∑
an is a conditionally convergent series, then for any real number r, there is a rear-

rangement of
∑
an which has sum r.

Example The series
∑∞

n=1
(−1)n

2n is absolutely convergent with
∑∞

n=1
(−1)n

2n = 2
3

and hence any rearrange-
ment of the terms has sum 2

3
.

Example Alternating Harmonic series
∑∞

n=1
(−1)n

n
is conditionally convergent, it can be shown

that its sum is ln 2,

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− 1

8
+

1

9
− · · ·+ (−1)n 1

n
+ · · · = ln 2.

Now we rearrange the terms taking the positive terms in blocks of one followed by negative terms in
blocks of 2

1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+

1

5
− 1

10
− 1

12
+

1

7
· · · =(

1− 1

2

)
− 1

4
+
(1

3
− 1

6

)
− 1

8
+
(1

5
− 1

10

)
− 1

12
+
(1

7
− 1

14

)
− · · · =(1

2

)
− 1

4
+
(1

6

)
− 1

8
+
( 1

10

)
− 1

12
+
( 1

14

)
· · · =

1

2

(
1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− 1

8
+

1

9
− · · ·+ (−1)n 1

n
+ . . . ) =

1

2
ln 2.

Obviously, we could continue in this way to get the series to sum to any number of the form (ln 2)/2n.
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Alternative Proof that the Alternating Harmonic Series Converges to ln(2) First, we look at

the sequence {1 +
1

2
+

1

3
+ . . .

1

n− 1
− ln(n)}∞n=1. I claim that this sequence converges to some number

γ which we will not calculate(we will just use the fact that this finite number exists). If we take the

Riemann Sum which gives the left side approximation to ln(n) =

∫ n

1

1

x
dx with ∆x = 1, we get an

inequality 1 + 1
2

+ 1
3

+ 1
4

+ · · · + 1
n−1

> ln(n) (shown on the left below for n = 8). If we take the

Riemann sum which gives the right side approximation to ln(n) =

∫ n

1

1

x
dx with ∆x = 1, we get an

under-approximation and an inequality 1
2

+ 1
3

+ 1
4

+ · · ·+ 1
n
< ln(n) (shown on the right for n = 8 below).

Since 1
n
> 0, we have 1

2
+ 1

3
+ 1

4
+ · · ·+ 1

n−1
< ln(n).

0 2 4 6 8 10
0.0

0.5

1.0

1.5

2.0

2.5

3.0

2.592857143 estimated area

0 2 4 6 8 10
0.0

0.5

1.0

1.5

2.0

2.5

3.0

1.717857143 estimated area

Thus we have

1

2
+

1

3
+

1

4
+ · · ·+ 1

n− 1
< ln(n) < 1 +

1

2
+

1

3
+

1

4
+ · · ·+ 1

n− 1

If I subtract 1 + 1
2

+ 1
3

+ 1
4

+ · · ·+ 1
n−1

from both sides of both inequalities above, we see that

−1 < ln(n)− (1 +
1

2
+

1

3
+

1

4
+ · · ·+ 1

n− 1
) < 0.

If I multiply across by −1, the inequality becomes

0 < 1 +
1

2
+

1

3
+

1

4
+ · · ·+ 1

n− 1
− ln(n) < 1.

Thus our sequence is bounded. We can also see that our sequence is increasing. Let Ln = 1 + 1
2

+ 1
3

+

1
4

+ · · · + 1
n−1

be the Riemann Sum which gives the left side approximation to ln(n) =

∫ n

1

1

x
dx with

∆x = 1. We see that Ln − ln(n) is increasing from the diagram on the left above, since it is the sum
of the gray regions above the curve which increases as n increases. Now since our sequence is bounded
and monotone it must have a finite limit which we will call γ.

Now consider the partial sum S2n = 1− 1
2

+ 1
3
− 1

4
+ · · ·+ 1

2n
of the alternating harmonic series. We

have

S2n = 1 +
1

2
+

1

3
+

1

4
+ · · ·+ 1

2n
− 2

(
1

2
+

1

4
+

1

6
+ · · ·+ 1

2n

)
= 1 +

1

2
+

1

3
+

1

4
+ · · ·+ 1

2n
− ln(2n)− 2

(
1

2
+

1

4
+

1

6
+ · · ·+ 1

2n

)
+ ln(2n)

= 1 +
1

2
+

1

3
+

1

4
+ · · ·+ 1

2n
− ln(2n)− (

(
1 +

1

2
+

1

3
+

1

4
+ · · ·+ 1

n
− ln(n)

)
+ ln(2).

Thus we have limn→∞ S2n = γ − γ + ln(2) = ln(2).
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